Logarithmic transformation and peak-discharge power-law analysis
نویسندگان
چکیده
منابع مشابه
Power Vs . Logarithmic Model of Fitts ’ Law : a Mathematical Analysis
résumé – Modèle de puissance vs. logarithmique de la loi de Fitts : une analyse mathématique. Après bientôt soixante années d’études, il reste toujours à déterminer si la loi de Fitts, un modèle célèbre du mouvement de pointage humain, est une loi logarithmique ou de puissance. Dans deux articles abondamment cités, Meyer & al. ont avancé l’idée que le modèle de puissance qu’ils ont déduit de le...
متن کاملPeak Power Analysis and Modelling
Database engines often consume significant power during query processing activities especially during complex query processing, which is motivating researchers to investigate the redesign of their database internals to minimize the energy overheads. While the prior literature has dealt exclusively with average power considerations, our focus here is on peak power consumption. We begin by profil...
متن کاملSpherical galaxy models with power law logarithmic slope
We present a new family of spherically symmetric models for the luminous components of elliptical and spiral galaxies and their dark matter haloes. Our starting point is a general expression for the logarithmic slope α(r) = d log ρ/d log r from which most of the cuspy models yet available in literature may be derived. We then dedicate our attention to a particular set of models whose logarithmi...
متن کاملLogarithmic Fourier transformation
INTRODUCTION SUMMARY We present an exact and analytical expression for the Fourier transform of a function that has been sampled logarithmically. The procedure is significantly more efficient computationally than the fast Fourier transformation (FFT) for transforming functions or measured responses which decay slowly with increasing abscissa value. We illustrate the proposed method with an exam...
متن کاملOptimal inequalities for the power, harmonic and logarithmic means
For all $a,b>0$, the following two optimal inequalities are presented: $H^{alpha}(a,b)L^{1-alpha}(a,b)geq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ H^{alpha}(a,b)L^{1-alpha}(a,b)leq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. Here, $H(a,b)$, $L(a,b)$, and $M_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hydrology Research
سال: 2019
ISSN: 0029-1277,2224-7955
DOI: 10.2166/nh.2019.108